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A method is proposed for determining heat flux on the basis of experimental 
measurement of temperature as a function of time at two internal points of a 
flat wall. 

A large number of investigations have recently been devoted to measuring and calculating 
heat flows. Many designs of calorimeters have been developed permitting the measurement of 
temperature as a function of time, with the result being used to calculate heat flux. To- 
gether with their advantages, present methods of measuring heat flux have certain shortcom- 
ings, which will be discussed briefly here. We will limit ourselves to nonstationary methods. 

Horner's method* [I-3] is the simplest in the first group of methods to be discussed. 
The calorimeter here is a thin plate made of a material with known thermophysical properties. 
It is assumed that the temperature of the plate is independent of its thickness, i.e., the 
difference in temperature between the front and back ends may be ignored. Among the problems 
with this method is the need to use high-speed recorders and materials capable of withstand- 
ing high temperatures. Since the back end of the calorimeter is thermally insulated, the 
temperature of the plate increases very rapidly. Under high thermal loads, transducers of 
this type can be used only once [2]. 

The second group of methods are those that employ a quasi-stationary mode of heating by 
a heat flow acting on a plate insulated on one side. Included in this group are the methods 
of mean temperature [4], successive intervals [4], and the method presented in [5]. The short- 
comings of these methods, as with the preceding method, include a short measurement time dic- 
tated by the maximum tolerable temperature of the transducer; advantages of these methods 
include the simple designs of the calorimeters, the need to record temperature at only one 
point on the transducer, and the simplicity of the formulas used to determine thermal flux. 

With methods of yet a third group, the change in temperature over time is measured at 
two points on the transducer. The back wall of the transducer may be insulated or cooled 
[6-9]. The shortcomings of these methods include the complexity of the formulas for deter- 
mining heat flux; advantages include the fact that the transducer can be cooled, so that 
measurement time is greater. 

Below we propose a method which properly belongs to the third group, although the for- 
mula used to determine heat flux is fairly simple. The transducer in this method is a plate 
with known temperature dependences of its thermophysical properties. The plate is cooled on 
one side with water. A diagram of the transducer is shown in Fig. I. The change in temper- 
ature over time is measured with thermocouples embedded in the plate at points with the co- 
ordinates xl and x2. In order to determine the heat flux through the plate, we need to solve 
the equation of thermal conductivity 

O ~ T _  1 OT (1 )  

Ox 2 a Ot 
with the boundary conditions 

and initial condition 

T(x ,  01 . . . .  = Ti (t), (2) 

T (x, t)[.=x. = T~ (t) (3) 

T(x,  t)lt=o = To = O. 

*Known xn the Soviet literature as the method of E. V. Kudryavtsev. 
similar reference was made in [4]. 
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Fig. 1. Diagram of measurement plate: 
x~, x=) points at which thermocouples 
are embedded. 

We will solve the above problem by using the method of functional corrections [I0] as a 
first approximation. In accordance with this method, the local rate of change in temperature 
in Eq. (I) is replaced by the average rate 

where 

OaT 
ax~ - f (t). (5) 

Xz 

/ ( t ) = - - I  S 1 __aTdx= 1 aTav 
x~ - -  x t  a at  a at (6 )  

XX 

After integrating Eq. (5) twice with respect to x, we obtain 

1 f (0 x2 + c, (0 x + c~ (t). (7) T=-~- 

Cons tan t s  Cz( t )  and C 2 ( t ) ,  d e t e r m i n e d  from boundary  c o n d i t i o n s  (2) and (3) ,  have the  form 

and 

Ci (t) = 7'2 (t) - -  T ,  (t) 1 f (t)(xx + x.~) 
x~ - -  x ,  2 

C2 (t) = T t  (t) x2 - -  T~ (t) x t  H- 1 
x~ - -  xt - 2 -  f (0 x,x2. 

(8) 

(9) 

Taking Eqs. (8) and (9) into account, we write Eq. 

T =  1 [ To (t) - -  T, (t) 
2 f(t) x2+L -x2--x~ 

S u b s t i t u t i n g  Eq. 

(7) in the form 

Designating 

. . . .  1 f (0 xix2 + Ti  (t) x ,  - -  T., (t) xi  1 f (t) (x,  + x2) x + - - ~  . " " ( I o )  
�9 2 x~ - -  x i  

(10) i n  (6 ) ,  we o b t a i n  the  d i f f e r e n t i a l  e q u a t i o n  fo r  d e t e r m i n i n g  f ( t )  

af(t__)+ 12a . f ( t ) -  6 d [ T ~ ( t ) + T 2 ( t ) ] .  (1])  
d t  (x,., - -  x t )  2 (x._ - -  x i )  2 dt 

12a 6 d 
p - -  , r =  - - [ T l ( t ) +  T2(t)], (12) 

(x,  - -  xl) 2 (x.2 - -  xi) ~ dt 

the solution to Eq. (II) may be written thus 

t 

(1) = "[ C + j ' r  (t) exp (pt) dt] exp ( - -p t ) .  f ( 1 3) 
0 

It follows from initial condition (4) that C = O. Equations (I0) and (13) determine the 
temperature field in the plate caused by the heat flowing through it, which can be computed 
from the formula 

q ( l ) = - - ~  o r  i . (14) 
OX Jx=O 

S u b s t i t u t i n g  Eq. (10) in  (14) ,  we o b t a i n  the  fo rmula  fo r  d e t e r m i n i n g  the  measured h e a t  f l u x  
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q(t) = - -  )~ -1--f _t (xo.-kxa) . (15) 
x2 - -  xt 2 

Taking Eq. (13) into account, we finally have 

t 

q ( t ) = - - x [  T2(t)-~T-!(t)x,, - -  xI 21(xe + &)exp (_p0 ,,fr(t)e>~p(Pt)]' (16) 
0 

w h e r e  p and  r a r e  d e t e r m i n e d  f r o m  E q s .  ( 1 2 ) .  

A t  t § co, Eq.  (16 )  may b e  s i m p l i f i e d ,  f ( t )  = O, w h i c h  f o l l o w s  f r o m  Eq.  ( 6 ) ,  and  h e a t  
flux is determined from the formula 

g = k T~ (t) -- Ti (l) 
- -  ; q = c o n s t .  ( 1 7 )  

X 2 - -  X l 

Equation (17) is well known [3,12] and is often used in measurements of the time constants of 
heat-flux probes with a water-cooled back wall. 

For the case where the back wall of the probe is insulated and q = const, f(t) has the 
form 

f ( t ) l t . =  - -  1 aTav  _ Vav  _ c o n s t .  
a a t  a ( 1 8 )  

Taking into consideration the fact that the problem was solved as a first approximation, 
the working formulas may be considered applicable for Fo ~0.I. 

In certain cases, the method proposed here for measuring heat flux reduces to an already 
well known and widely used method. Let us analyze its relationship to Horner's method. To 
this end, we integrate Eq. (5) with respect to x from xl = 0 to xa = ~ and obtain 

0T x=~ 0T= x=o : ~f. ( 1 9) 
O x  Ox 

U s i n g  Eq.  (6 )  a b o v e ,  we a r r i v e  a t  t h e  e q u a t i o n  
6 

OT I OT_I  = 1 ~ . O T _ d x .  ( 2O) 
Ox !.=~ Ox b=o a J at 

0 

Employing premises similar to those used in Horner's method: 

aTox .=~ = 0, Ti = T2 = Tar (t), ( 21 ) 

finally, from Eq. (20) we have 

Cl (t) = --~ OF 'i = c p 6 0 T a v  �9 
�9 a~-Ix=0 - - ~ ,  Fo/~.0.1. (22) 

T h u s ,  we o b t a i n  t h e  same r e l a t i o n  a s  was d e r i v e d  i n  [ 1 - 3 ] .  L e t  us  now d i s c u s s  t h e  r e l a -  
t i o n s h i p  w i t h  t h e  m e t h o d  p r e s e n t e d  i n  [ 5 ] ,  a s  w e l l  a s  t h e  m e t h o d s  o f  mean  t e m p e r a t u r e  and  
s u c c e s s i v e  i n t e r v a l s .  A l l  o f  t h e  m e t h o d s  e x a m i n e d  h e r e  e m p l o y  a q u a s i - s t a t i o n a r y  mode f o r  
t h e  h e a t i n g  o f  a p l a t e  w i t h  a n  i n s u l a t e d  b a c k  w a i l  w i t h  a c o n s t a n t  h e a t  f l u x  a t  Fo  >--i 0 . 5 .  
The t e m p e r a t u r e  f i e l d  i n  t h e  q u a s i - s t a t i o n a r y  mode i s  d e s c r i b e d  b y  t h e  e q u a t i o n  i n  [ 1 1 ] :  

T = T O q- ~ -  ~ -  , ~ -  q- , = const. ( 23 )  -6- z- --k, - " F o ~ 0 . 5 ;  q 

Differentiating Eq. (23) with respect to t, we obtain 

OT _ qa _ V consl (24) 
0t ~6 

Substituting Eq. (24) in (20), we have 

= - - ~  a T  t = c96V = cp6 a T  q 
ax . = o  a t  (25) 

i.e., a formula which agrees with the relations in [4,5]. The precise relationship of the 
method presented here with that discussed above can be easily shown by substituting Eq. (23) 
in Eq. (16), from which then follows the identity of the right and left members of Eq. (16). 
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Fig. 2. Diagram of transducer for 

measuring thermal flux [3]. 

The above statements also apply to the method of successive intervals at q = const. 

In conclusion, let us examine the method of mean temperature [4]. Since the back wall 
is insulated, Eq. (19) has the form 

O T  x=o= 5f. 
ax 

Using the condition k(~T/3x[x=~) = 0, we will determine TI in conjunction with Eq. (10): 

1 
Tl = T f62 4- T~. 

Substituting Eq. (27) in Eq. (I0), we have 

(26) 

(27) 

Considering that 

T 1 f ( 6 - - x ) :  ' (28) -- , "T- T2. 
2 

6 

0 

we will determine the point where T, found from Eq. (28) with the coordinate x*, is equal to 
the mean temperature at a given moment, i.e., 

T(x* ,  t) = ~ v  (t). (30) 

S u b s t i t u t i n g  Eqs .  (28) and (29) i n  Eq. ( 3 0 ) ,  we w i l l  have  

x ,  F3 - - = 1 - -  ~0 .4226.  (31) 
5 3 

Considering that f = (I/a)(3Tav/3t) and taking Eq. (30) into account, we find from Eq. (26) 
that .. 

q(t) = --~ OT Ix= ~ OT(x*,  t) 
0-x- = c p 6  Ot " (32) 

Thus, results are obtained that are identical to those obtained by the method of mean 
temperature. However, it shouldbe noted that, in contrast to [4], there are no limitations 
on q. 

There are several designs of transducer suitable for use in conjunction with the method 
proposed here, such as the designs presented in [3,12-17]. One of them is shown schematically 
in Fig. 2 [3]. Also, the calorimeters used in the methods discussed in this article can be 
employed. 

We will examine use of the method proposed here using the example of a sudden increase 
in heat flux from zero to qd = 200,000 W/m 2. The measurement transducer is a plate of thick- 
ness ~ = 0.02 m, cooled with water at To = 20~ The plate is made of steel 20 and has a 
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0,/ qe qs ~4 c, e o,8 / 2 s o e 8 /o zo e 

Fig. 3. Approximation of change in temperature of 
plate (0~x~6) at points with coordinates x~ = 0 
and x2 = ~ with sudden heating of the plate surface 
by a constant heat flow [T, ~ t/33.9, a dimension- 
less number; t, sec]. 

coefficient of thermal conductivity I = 48.5 W/m-~ The coefficient of heat transfer from 
the back wall to the coolant water ~ = 970 W/m2-~ The thermocouples were embedded in the 
plate on the back x~ = 0 and front x2 = 6 walls. The change in plate temperature is shown 
in Fig. 3. Changes in temperature Ta(t) and T2(t) [11] are approximated by polynomials 

T t = a o ~ a i t - q - a 2 l  2, 13.56 ~ t ~ 1 6 9 . 5 0  see, (33) 

where  a o = 52.12~ ai = 2 .275~ =--O.O060~ ~d  

T~ -- ~ + b~t + b2tZ; 13.56 ~ t - ~  169.50 see. (34) 

where  bo = 10.56~ b~ = 2 . 0 2 2 ~  b2 = - -O .O058~  2. 

The narrow time interval within which Eqs. (33) and (34) are valid is due to the approx- 
imation of TI and T2 by quadratic polynomials. Equations (33) and (34) cannot sufficiently 
accurately describe the temperature throughout the entire interval to t ~0.l~2/a = 3.39 sec. 

Using a higher-order polynomial, we can make the approximation valid for a larger time 
interval. Substituting Eqs. (33) and (34) in Eq. (16), we obtain 

q(t) __~{T~( t ) -~Ti ( t )  1 [~a -  ( 6z ) ]} 6z 6~ = ~---2-6 - (ai+b~) + 1 t - -  (a~q-b2) ; 0 . 4 - - ~ l ~ 5 - -  (35) 
a 12a a " a 

For  t ime  t + ~, f § ~ q ( t )  i s  d e t e r m i n e d  by Eq. ( 1 7 ) .  

Table I shows values of q(t) determined from Eq. (35) in relation to time and the asso- 
ciated error. As can be seen from Table I, the method is sufficiently accurate. It should 
be noted that the magnitude of the error is affected by the error of the approximation of 

the change in temperature over time (Fig. 2). 

The exceptional simplicity of Eqs. (I0) and (16) and the method of calculation based on 
the averaging of functional corrections follow from the above. From a practical point of 
view, the proposed method is preferable to most of the other methods, which lead to solutions 
in the form of infinite series using integral concepts and special functions (such as in 

[7-9]). 

TABLE I .  

t, $CC 

q, Wire z 
R,% 
t ,  Sec 

q, w/re' 
R,% 

Heat Flux Calculated from E, . (35) 

13,56 
192093 
--3,95 

33,90 
194218 
--2,89 

16,95 
192477 
--3,76 

67,80 
196818 
--1,59 

20,34 
192848 
--3,58 
101,69 
198242 
--0,88 

23,73 
193209 
--3,40 
I35,59 
198588 
--0,71 

27,12 
193557 
--3,22 
169,49 
197563 
--1,22 

30,51 
193893 
--3,05 

200014 

--0,01 
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For practical application of the proposed method, use may be made of existing calorim- 
eter designs. Moreover, the measurement transducer does not require calibration. 

NOTATION 

a = %c0, thermal diffusivity; ao, al, a2, coefficients in (33); bo, bl, b=, coef- 
ficients in (34); Bi = ~6/%, Biot number; c, heat capacity; C, constant; f(t), 
time functions in (6); Fo = at/~ 2, Fourier number; q, heat flux; t, time; TI = 
T(xl, t), temperature at point xl; Tu = T(x2, t), temperature at point,x2; Tar, 
mean temperature; x~, xu,coordinates for embedment of thermocouples; x , coordi- 
nate of mean-temperature point; 6, thickness of plate; %, thermal conductivity; 
0, density. 
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